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Deep Learning

Source
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DL Theory: Expressiveness, Optimization & Generalization

Outline

1 Deep Learning Theory: Expressiveness, Optimization and Generalization

2 Analyzing Optimization via Trajectories

3 Trajectories of Gradient Descent for Deep Linear Neural Networks
Convergence to Global Optimum
Acceleration by Depth
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DL Theory: Expressiveness, Optimization & Generalization

Statistical Learning Setup

X — instance space (e.g. R100×100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or {1, . . . , k} for classification)

D — distribution over X × Y (unknown)

` : Y×Y → R≥0 — loss func (e.g. `(y , ŷ) = (y − ŷ)2 for Y = R)

Task
Given training set S = {(Xi , yi )}mi=1 drawn i.i.d. from D, return hypothesis
(predictor) h : X → Y that minimizes population loss:

LD(h) := E(X ,y)∼D[`(y , h(X ))]
Approach
Predetermine hypotheses space H ⊂ YX , and return hypothesis h ∈ H
that minimizes empirical loss:

LS(h) := 1
m
∑m

i=1
`(yi , h(Xi ))
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Task
Given training set S = {(Xi , yi )}mi=1 drawn i.i.d. from D, return hypothesis
(predictor) h : X → Y that minimizes population loss:

LD(h) := E(X ,y)∼D[`(y , h(X ))]
Approach
Predetermine hypotheses space H ⊂ YX , and return hypothesis h ∈ H
that minimizes empirical loss:

LS(h) := 1
m
∑m

i=1
`(yi , h(Xi ))

Nadav Cohen (IAS) Optimization in DL via Trajectories ICERM Workshop, Feb’19 5 / 35



DL Theory: Expressiveness, Optimization & Generalization

Statistical Learning Setup
X — instance space (e.g. R100×100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or {1, . . . , k} for classification)

D — distribution over X × Y (unknown)

` : Y×Y → R≥0 — loss func (e.g. `(y , ŷ) = (y − ŷ)2 for Y = R)
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DL Theory: Expressiveness, Optimization & Generalization

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

h
*

Sh

*h

*f

(all functions)

(hypotheses space)

f ∗D — ground truth (minimizer of population loss over YX )

h∗D — optimal hypothesis (minimizer of population loss over H)

h∗S — empirically optimal hypothesis (minimizer of empirical loss over H)

h̄ — returned hypothesis
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DL Theory: Expressiveness, Optimization & Generalization

Classical Machine Learning

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a convex program:

h̄ ≈ h∗S ( training err ≈ 0 )

Expressiveness & Generalization
Bias-variance trade-off:

H approximation err estimation err
expands ↘ ↗
shrinks ↗ ↘

Well developed theory
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DL Theory: Expressiveness, Optimization & Generalization

Deep Learning

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a non-convex program:

h∗S is not unique — many hypotheses have low training err
Gradient descent (GD) somehow reaches one of these

Expressiveness & Generalization
Vast difference from classical ML:

Some low training err hypotheses generalize well, others don’t
W/typical data, solution returned by GD often generalizes well
Expanding H reduces approximation err, but also estimation err!

Not well understood
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Analyzing Optimization via Trajectories

Optimization

h
*

Sh

*h

*f

Training Error 
(Optimization)

(all functions)

(hypotheses space)

f ∗D — ground truth

h∗D — optimal hypothesis

h∗S — empirically optimal hypothesis

h̄ — returned hypothesis
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Analyzing Optimization via Trajectories

Approach: Convergence via Critical Points

Prominent approach for analyzing optimization in DL is via critical points
(∇ = 0) in loss landscape

Non-strict saddleGood local minimum
( ≈ global minimum)

Poor local minimum Strict saddle

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then gradient descent (GD) converges to global minimum

Nadav Cohen (IAS) Optimization in DL via Trajectories ICERM Workshop, Feb’19 11 / 35
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(1) (2)

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then gradient descent (GD) converges to global minimum

Motivated by this, many 1 studied the validity of (1) and/or (2)

1 e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Analyzing Optimization via Trajectories

Limitations
Convergence of GD to global min was proven via critical points only for
problems involving shallow (2 layer) models

Approach is insufficient when treating deep (≥ 3 layer) models:

(2) is violated — ∃ non-strict saddles, e.g. when all weights = 0

Algorithmic aspects essential for convergence w/deep models, e.g.
proper initialization, are ignored
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Analyzing Optimization via Trajectories

Optimizer Trajectories Matter

Different optimization trajectories may lead to qualitatively different results

=⇒ details of algorithm and init should be taken into account!
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Analyzing Optimization via Trajectories

Existing Trajectory Analyses

Trajectory approach led to successful analyses of shallow models:
Brutzkus & Globerson 2017
Li & Yuan 2017
Zhong et al. 2017
Tian 2017
Brutzkus et al. 2018
Li et al. 2018
Du et al. 2018
Oymak & Soltanolkotabi 2018

It also allowed treating prohibitively large deep models:
Du et al. 2018
Allen-Zhu et al. 2018
Zou et al. 2018

For deep linear residual networks, trajectories were used to show efficient
convergence of GD to global min (Bartlett et al. 2018)
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Linear Neural Networks
Linear neural networks (LNN) are fully-connected neural networks
w/linear (no) activation

W1 W2 WNx y = WN • • • W2W1 x

As surrogate for optimization in DL, GD over LNN (highly non-convex
problem) is studied extensively

Existing Result (Bartlett et al. 2018)
W/linear residual networks (a special case: Wj are square and init to Id),
for `2 loss on certain data, GD efficiently converges to global min

↑
Only existing proof of efficient convergence
to global min for GD training deep model
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Gradient Flow
Gradient flow (GF) is a continuous version of GD (learning rate → 0):

d
dt α(t) = −∇f (α(t)) , t ∈ R>0

Gradient descent

Gradient flow

Admits use of theoretical tools from differential geometry/equations
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Trajectories of Gradient Flow

W1 W2 WNx y = WN • • • W2W1 x

Loss `(·) for linear model induces overparameterized objective for LNN:
φ(W1, . . . ,WN) := `(WN · · ·W2W1)

Definition
Weights W1 . . .WN are balanced if W>

j+1Wj+1 = WjW>
j ,∀j .

↑
Holds approximately under ≈ 0 init, exactly under residual (Id) init

Claim
Trajectories of GF over LNN preserve balancedness: if W1 . . .WN are
balanced at init, they remain that way throughout GF optimization
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Implicit Preconditioning
Question
How does end-to-end matrix W1:N :=WN · · ·W1 move on GF trajectories?

W1 W2 WN  W1:N

Linear Neural Network Equivalent Linear Model

)NW,…, 1W(    Gradient flow over ?

Theorem
If W1 . . .WN are balanced at init, W1:N follows end-to-end dynamics:

d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
where PW1:N (t) is a preconditioner (PSD matrix) that “reinforces” W1:N(t)

Adding (redundant) linear layers to classic linear model induces
preconditioner promoting movement in directions already taken!
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Convergence to Global Optimum

d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]

PW1:N (t)�0 when W1:N(t) has full rank =⇒ loss decreases until:

(1) ∇`
(
W1:N(t)

)
= 0 or (2) W1:N(t) is singular

`(·) is typically convex =⇒ (1) means global min was reached

Corollary
Assume `(·) is convex and LNN is init such that:

W1 . . .WN are balanced

`(W1:N) < `(W ) for any singular W

Then, GF converges to global min
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

From Gradient Flow to Gradient Descent

Our convergence result for GF made two assumptions on init:
1 Weights are balanced:2 Loss is smaller than that of any singular solution:

`(W1:N) < `(W ) , ∀W s.t. σmin(W ) = 0

For translating to GD, we define discrete forms of these conditions:

Definition
For δ ≥ 0, weights W1 . . .WN are δ-balanced if:

‖W>
j+1Wj+1 −WjW>

j ‖F ≤ δ ,∀j
Definition
For c > 0, weights W1 . . .WN have deficiency margin c if:

`(W1:N) ≤ `(W ) ,∀W s.t. σmin(W ) ≤ c
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For c > 0, weights W1 . . .WN have deficiency margin c if:

`(W1:N) ≤ `(W ) ,∀W s.t. σmin(W ) ≤ c
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Trajectories of GD for Deep LNNs Convergence to Global Optimum

Convergence to Global Optimum for Gradient Descent
Suppose `(·) = `2 loss

(
i.e. `(W ) = 1

m
∑m

i=1 ‖W xi − yi‖22
)

Theorem
Assume GD over LNN is init s.t. W1 . . .WN have deficiency margin c > 0
and are δ-balanced w/δ ≤ O(c2). Then, for any learning rate η ≤ O(c4):

loss(iteration t) ≤ e−Ω(c2ηt)

Claim
Assumptions on init — deficiency margin and δ-balancedness:

Are necessary (violating any of them can lead to divergence)

For output dim 1, hold w/const prob under random “balanced” init

Guarantee of efficient (linear rate) convergence to global min!
Most general guarantee to date for GD efficiently training deep net.
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Trajectories of GD for Deep LNNs Acceleration by Depth

Outline

1 Deep Learning Theory: Expressiveness, Optimization and Generalization

2 Analyzing Optimization via Trajectories

3 Trajectories of Gradient Descent for Deep Linear Neural Networks
Convergence to Global Optimum
Acceleration by Depth

4 Conclusion
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Trajectories of GD for Deep LNNs Acceleration by Depth

The Effect of Depth

Conventional wisdom:

Depth boosts expressiveness

input early layers intermediate layers deep layers

But complicates optimization

We will see: not always true...
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Trajectories of GD for Deep LNNs Acceleration by Depth

Effect of Depth for Linear Neural Networks

For LNN, we derived end-to-end dynamics:
d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
Consider a discrete version:

vec
[
W1:N(t + 1)

]
←[ vec

[
W1:N(t)

]
− η · PW1:N (t) · vec

[
∇`(W1:N(t))

]
Claim
For any p > 2, there exist settings where `(·) = `p loss:

`(W ) = 1
m
∑m

i=1 ‖W xi−yi‖pp ← convex
and disc end-to-end dynamics reach global min arbitrarily faster than GD

w1

w2

w1

w2 Gradient descent End-to-end dymaics
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Trajectories of GD for Deep LNNs Acceleration by Depth

Experiments

Linear neural networks:
Regression problem from UCI ML Repository ; `4 loss

Depth can speed-up GD, even w/o
any gain in expressiveness, and

despite introducing non-convexity!

This speed-up can outperform
popular acceleration methods
designed for convex problems!
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Trajectories of GD for Deep LNNs Acceleration by Depth

Experiments (cont’)
Non-linear neural networks:

TensorFlow convolutional network tutorial for MNIST:
Arch: (conv → ReLU → max pool) x 2 → dense → ReLU → dense
Training: stochastic GD w/momentum, dropout

We overparameterized by adding linear layer after each dense layer

0 1000 2000 3000 4000 5000 6000 7000 8000

iteration

10−1

100

101

ba
tc

h
lo

ss

original
overparameterized Adding depth, w/o any gain in

expressiveness, and only +15% in
params, accelerated non-linear
net by orders-of-magnitude!
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Conclusion

Recap

Understanding DL calls for addressing three fundamental Qs:

Expressiveness Optimization Generalization

Optimization

Deep (≥ 3 layer) models can’t be treated via geometry alone
=⇒ specific optimizer trajectories should be taken into account

We analyzed trajectories of GD over deep linear neural nets:

Derived guarantee for convergence to global min at linear rate
(most general guarantee to date for GD efficiently training deep model)

Depth induces preconditioner that can accelerate convergence,
w/o any gain in expressiveness, and despite introducing non-convexity
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Conclusion

Next Step: Analyzing Generalization via Trajectories

h

*

Sh

*h

*f

Estimation Error 
(Generalization)

(all functions)

(hypotheses space)
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Thank You
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